JOURNAL OF COMPUTATIONAL prysics 109, 306-317 (1993)

Efficient Algorithms for Many-Body Hard Particle Molecular Dynamics*

MAaURICIO MARIN

Departamento de Computacion, Faaddtad de Ingenieria, Universided de Magallanes, Casilla 113-D, Pumia Arenas, Chile

DPivo Risso! aNp PaTricio CORDERO

Departamento de Fisica, Faeultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Casitla 487 -3, Santiago, Chile

Received March 2, 1992; revised January 11, 1993

Many-body simulations are very CPU-time consuming, making
the prablem of having efficient algorithms specially relevant, [n this
paper we propose a strateqy--for the simulation of hard particle
systems —-that is efficient, memory saving, and easy to understand and
to program. The time intervals by which the simulation proceeds are the
increments between collisions (events), and these are dictated by the
system itself. Hence these are event-driven simulations. Qur strategy is
devised 1o (a) minimize the number of coordinate updates per event,
{b) predict new events only between nearby particles, and (c)
efficiently manage the events predicted during the simulation. Empirical
results are given to show the perfarmance of our strategy in different
computers as well as to compare with other approaches. It is seen that
our proposed algorithm is efficient for a wide density range. We also
include an analysis of the performance of the strategy proposed.
&1 1993 Academic Press, Inc.

1. INTRODUCTION AND SUMMARY

A well-cstablished tool for computational studies of solids
and fluids is N-body molecular dynamics. Event-driven
molecular dynamics {1,2] is the optimal choice with
piecewise constant potential interactions.

When the interaction potential is piecewise constant,
particles move free of interparticle forces except for isolated
instants wherc they suffer impulsive forces or events. The
movement of cach particle between events obeys Newton's
equittion with whatever external forces (c.g., gravity) may
exisi. The time intervals by which the simuiation proceeds
arc the increments between events, and these are dictated by
the system itsell. Such characteristics make these types of
simulations particularly efficient in the sense that the
simulation can be run a long time, measured in units of
a system time like, eg., the diffusion time. Applications

* Partially supported by FONDECYT Grant 90-1240.
' Partially supported by a feitowship from Fundacion Andes and a
FONDECYT Research Grant 90-0005.

0021-9991/93 $5.00 306

Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

of these types of simulations have been illustrative and
inspiring (see, for example, [3-97.)

There are several olther types of molecular dynamics
simulations that require totally different computational
technigues. In general those are time-driven simulations,
meaning that a time step has to be fixed by the algorithm
itsclf and not by the dynamics of the system [10-12].

Algorithms appropriate to make hard particle computer
simulations have been developing since the late fiftics,
starting with the classical articles of Alder and Wainwright
[1,13). In [13] a general algorithm and the idea of
dividing the system in a grid of small cubes—cells—to
eliminate calculations for particles that are far apart was
introduced. In [14] a scheme for ¢conomizing coordinate
updales and for keeping a list of possible future collisions as
efficiently as possible was proposed.

One of the basic concepts used in this type of simulations
is that of future events. Possible future events need to be
calcutated to decide which one will actually happen next.
The simulation then jumps to that instant. The other events
arc kept in a furure events fist since some of them will take
place several steps later and there is no need to recalculate
them. Still some others will never take place because a
collision invalidates them, namely, one of the partners
suflers a previous collision.

The first strategics proposed to manape cificicntly the
future events fist (L) had a cost ()(\/ﬁ) [15 16]. A sub-
stantial improvement for hard particle molecutar dynamics
was given by Rapaport [2]. He created an efficient
algorithm O(log, N} to maintain an event list scheduling.
Optimizing the administration of the FEL is important
because a significant fraction of the time of the simulation is
spent on this job. Recently, in {177 a different approach was
presented, -

In this paper we propose a new strategy—based on a
future events list and a basic cycle—to make simulations of
systems consisting of N hard particles. The proposed

SIMULATION OF HARD PARTICLE SYSTEMS

strategy has the advantage that it is efficient {over a wide
density range), memory saving, easy to understand, and
easy to program,.

In the basic cycle a time variable is associated to every
particle in order to postpone particle state updates until it is
absolutely necessary. Hence this is a Delayed States Algo-
rithnt (DSA). Minimizing the number of coordinate updates
improves efficiency and reduces the rounding errors. The
basic cycle can schematically be condensed to four opera-
tions: (a) picking the next cvent from the FEL, (b)
updating—if necessary—the states of the particles involved
in the current event, (¢) calculating the new events for each
particle involved in the current event, and (d) inserting
these new events into the FEL.

The administration of the FEL has to be optimized,
taking into consideration that the operations acting on the
FEL have to pick up the next event, insert new events
(scheduling) and erase (invalid) events that cannot happen.
To be able to efficiently pick up the next event it is certainly
convenient to make use of a binary tree [18) and this
efficiency is further increased if one can reduce the number
of accesses to the tree [19].

Our answer to these probiems is the local minima algo-
rithm (LMA) that we sketch in the following. For each par-
ticle 7 we build a singly linked list L, [207] containing all the
future events—that we denote by £(x), x being the other
object involved in the event—that have been predicted for i.
An event &(/)is in list L; and not in list L,. These &;(x) are
structured variables containing the necessary information
associated to the specific event.

Each one of these N local lists has a focal minimum event:
the event with lesser time in L,. These are the only events
that enter the binary tree. The determination of the local
minimum for disk 7 and its insertion in the binary tree is
performed regardless of the existence of other possible
events &;(/) within the FEL.

Some local minima lose validity during the simulation
because the partner particle suffers another collision first.
This makes it necessary to carry a correcting operation to
reestablish the condition that in the binary tree there be
onty valid local minima. We have been able to determine
that such corrections occur infrequently during the
simulation.

A drawback in some binary trees is the cost of keeping
them balanced and of eliminating nodes [187]. We do not
have these problems because we use a complete binary tree
{CBT) [20]. Such a tree is balanced by definition and in our
case it is never necessary to eliminate a node of the tree. Its
structure is fixed on initialization. The base of the tree has
N leaf nodes rigidly associated to each one of the N particles
of the system.

At this point we have to clarify that only the labels
i—that identify particles associated to the local minimal
events & (x)—enter the CBT and not the full structured

307

variables. In this way, inserling and deleting is efficient
because it is an operation over the lists ;.

In this article we provide theoretical and experimental
evidence supporting our strategy based on this mixed struc-
ture (local lists and a binary tree). We emphasize that the
basic observations that justify our solution are that (a) the
FEL necessarily contains many events that will never take
place and {b) the most probable event associated to particie
i that will happen next is the one with shorter time.

We will see that the efficiency of the LMA is close to
optimum. In fact, the running time costs of picking the next
event and scheduling » new events for each particle are O{1)
and O(n—1 +log, N}, respectively. That is, we have been
able to reduce the number of accesses to the binary tree to
roughly one access for every disk involved in each collision.
We know of no other algorithm which can attain this
performance.

It is important to emphasize that significant improve-
ments have been made in the development of data structures
and algorithms {18, 217 which are appropriate for general
purpose FELs. These algorithms, however, are not suitable
for the class of simulations that we are interested in
because of their own sophistication, which introduces an
unnecessary overhead.

The main point that must be considered to make efficient
simulations of a general event-driven system are already
present in the development of algorithms for the two-dimen-
sional system of hard disks. For this reason and for the sake
of simplicity our strategy is given in the context of a hard
disk system. We have also chosen this kind of system due to
the interest in event-driven molecular dynamics sirnulations
for large systems (e.g., [4,5, 7]} The system used in the
simulations reported in this paper (with programs written in
C-language) consisted of 2500 identical disks colliding
elastically between each other and with the walis of a square
box. There was no external field present. The initial
conditions were set at random.

This paper can be thought of a divided into three parts.
The proposed algorithms themselves are found in Sections
2 and 3. Empirical results are given in Section 4 to see how
our full program works in different computers and also to
make comparisons with other algorithms. In Section 5 we
give our final comments. Appendix A is dedicated to
analyze the performance of the local minima algorithm and
it is shown that our strategy to postpone erasing invalid
local minima is the best choice. Appendix B gives a notation
and glossary table.

2. THE DELAYED STATES ALGORITHM (DSA)

In what follows we consider a two-dimensional system of
N hard disks of diameter D in a rectangular box of Ly x L.
The events by which the simulation proceeds—denoted as

308

&—are either binary disk—disk collision (DDC events
denoted &;(f)} or disk—wall collisions (DWC events denoted
&.(w)). Letters J, J, k denote disks, and w denotes a wall. The
reason to have an asymmetric notation &) is to emphasize
that the events are calculated after a specific disk / has had
a collision.

It is known [2, 13] that to improve the efficiency of the
simulation it is convenient to divide the L, x L, box into
cells. Let us assume that it is possible to tile the box with
Ky x Ky identical square cells of size o x a. The program
keeps up a K, x K, matrix .# called the cell-matrix. This
cell-matrix contains in its .#,, element the list of disks
whose center is in the cell ab of the box. The neighborhood
of a disk i currently in cell ab is the set of (usually nine) cells
formed by the cell ab itsell and its adjacent cells. In this way,
choosing

6> D, (2.1)

a disk can only hit another disk in its current neighborhood.
Since the disks are moving it is necessary to detect the
instant when a disk crosses to an adjacent cell to include its
possible collisions with objects (disks or walls) belonging to
the (usually three) new cells that become part of the new
neighborhood of that disk. Therefore a new type of event—
called virtual wall collision—has to be incorporated: the
crossing of a disk from one cell to another, denoted as VWC
from now on.

Sometimes we will refer to hard collisions meaning events
involving a disk and another real object (DDC or DWC
events) to distinguish them from virtual wall collision events
{VWC) which are artifacts of the algorithm.

The state s, of every disk / can be defined by the position
and velocity vectors,

s;=(r; v;). (2.2)

To reduce the cost of every cycle of the simulation, however,
it is possible to proceed as follows. At every cycle of the
algorithm—when only one event occurs—only the disk(s)
invelved in that event is (are) processed (updating its (their)
state(s) if the event is a hard collision and predicting and
scheduling new events for the disk(s)), postponing any
action on the states of the other disks. This makes it
necessary to introduce a new variable to the state of every
disk: the time 7, when disk 7 was last updated. We use the
symbol S; to denote the complete state of disk i:
S, = (5;, 1) (2.3)

To simulate chronologically the events it is necessary to
know which is the next event. With this aim a future events
list (FEL) is used. After getting and processing the next

MARIN, RISSO, AND CORDERO

event from the FEL it is necessary to insert (schedule) new
events in it. :
The DSA makes use of the following functions:

* Ty (S5)) returns the collision time predicted for disk /
with a wall and the type of event (DWC or VWCQC).

* T, (8, §;) returns the collision time predicted for the
(i, j} disk—disk collision (DDC event).

e Flis,, t —ty) the free-evolution function updates the state
S; of disk i from an instant 7, to a later time ¢, knowing that
i does not suffer any type of coliision during the interval
(EO, I)'

* (7,(s;, w) makes the instantaneous changes suffered by
the state s; of the disk 7 involved in a DWC.

* G,(s;, 5,} makes the instantaneous changes suffered by
the states s;, s, of the disks /, jinvolved in a DDC.

+ Update .#(i, w) moves the disk identifier / from one
cell of the cell-matrix .# to the new cell, after every VWC
event.

» Neighborhood(event, i) gives the set of disks present in
the neighborhood of disk 7, taking into account the type of
event (DDC, DWC, or VW), the current cell of / and the
position of the cell itseif within the box. The reason why this
function needs event as an argument is that when it is called
after a VWC only the disks in the three new celis of the
neighborhood need to be considered.

» NEXT_EVENT returns the next event to occur namely
the event which has the lesser time in the FEL. This opera-
tion gives the type of event (a flag called event_type), the
disk involved, the partner object x (disk or wall) and the
time at which this event is scheduled to happen.

» SCHEDULE inserts a new event in the FEL. It takes
four arguments: the type of the event (event_type flag) being
inserted; the disk i involved; the partner object x (disk or
wall); and the time at which this event will be scheduled to
happen.

In this way, an efficient strategy to simulate the system
consists of cycles formed by: (1) one NEXT_EVENT
operation, followed by (2a) an updating of the state(s) of
the disk(s) involved if the event was a hard collision (PDC
or DWC) and (2b) updating the cell-matrix .# if the event
was a virtual wall coilision (VWC(C), and (3) one or more
SCHEDULE operations as in the Delayed States Algo-
rithm in Fig. 2.1.

It is important to realize that the strategy so far defined
yields the correct behavior of the system—provided the
events are processed chronologically—in spite of the fact
that at any given time the states of the individual disks are
updated to different times. To obtain a snapshot of the
system it suffices to apply the function F to bring all states
to the current simulation time.

The floating point errors are reduced if the disk state

SIMULATION OF HARD PARTICLE SYSTEMS

begin Initialization
initialize all 7; to zero
initialize all states s;
build the cell-matrix M
build the Future Events List
end Initialization.

MAINLOOP

309

(event_type,i*,z*,t) « NEXT_.EVENT /* z* labels a disk or a specific wall */

Case event_type Of
DDC:

/* a disk-disk collision */

for (k =1i",2") S, « Flse,t —70)

(S‘--,S,:o) — GZ (5;-,8,*)

for {k = i*,z*) PREDICTIONS{k, DDC)

DWC:
Sie — Fse t — 1)
8- +— Gi(s;-)
PREDICTIONS(i", DWC)

VWC:
UpdateM(i*, z*)
PREDICTIONS(i*, VWC)

endCase
endMAINLOOP

PREDICTIONS(i, event)
begin
{event_w, w,t) — Tw (5:)
SCHEDULE(event_w, 1,w,1)
for (j¢ Neighborhood(event, 7} }
t — Tp (S, 8;)

/* a hard wall collision */

/* a virtual wall crossing */

if (t < oo) then SCHEDULE(DDC, ¢,j,t)

endfor
end PREDICTIONS

FIG. 2.1.

variables are not actually updated until it is absolutely
necessary. This happens whenever a disk undergoes a hard
collision. In other words, if the next event is a VW then the
new cvents associated to the new cells of the neighborheod
are calculated and added to the list of future events but the
state of that disk is kept in its pre-VWC condition.

3. THE LOCAL MINIMA ALGORITHM (LMA)

In this section we describe our algorithm to administer
the FEL. Let us define the focal minimum associated to disk
i as the event with lesser time among all the events & {x)
scheduled for i The Local Minima Algorithm is based on

The Delayed States Algorithm.

the intuitive idea that of all the events scheduled for a disk,
the one with minimal time is the most probable one to
occur. Therefore, it suffices to compare the local minima
associated to every disk to be able to get the next event.
The operation described in the previcus paragraph must
be corrected if the next event is a DDC—&,(f) say—which
happens to be invalid. It will be invalid if the partner disk j
has suffered a hard collision after &:() was SCHEDULEd.
Under such circumstances &{/) is dropped and the next
local minimum for 7 1s selected and compared with the other
local minima. This corrective operation will be called
RESCHEDULE and it is carried out as many iimes as
necessary until a valid next event is selected. In Appendix A
it is argued that such corrections do not occur very often,

310

The algorithm works with singly linked lists—Z,; from
now on—associated to every disk i, where the events &.(j)
scheduled for 7 are kept. A disk / may also appear in a &,(i)
which belongs only to L,. Whenever / suffers a hard colli-
sion, L, is cleared and new events are SCHEDULEJ into it.
On the contrary if i crosses a cell wall (virtual wall collision)
new events are added to L. These linked lists L, are useful
to find the next local munimum for disk i/ when
RESCHEDULing or after a virtual wall collision.

To detect the invalidated events, the algorithm uses an
integer array—with components C,—where the current
value of the number of hard collisions for every disk 7 is
kept. When scheduling new events, each DDC event & (/)
stores a variable ¢ that records the value of C, associated to
the partner disk j at the moment of its scheduling. The
definition of a DDC event is

&(J)= {1, event, J, c), (3.1)
where 1 is the time when the event is scheduled to occur.

To decide whether an event is valid, the current value C;
is compared with the value ¢ kept in &;{j). This comparison
is used when deciding which is the next event and also when
the local minimum of a list is being searched (it 1is
convenient to drop the invalid events in L, at this point).

The definition of a VWC or a DWC event has the form

& (w)= (1, event, w). (3.2)
To compare efficiently the local minima we use a complete
binary tree CBT [20], associating a disk identifier to each
leaf (see Fig. 3.1a). The logic of the CBT is the same one
often used in sports tournaments: to each competitor there
is associated a fixed node at the base of the tree {a leaf node),
the name of the winner of each individual match is trans-
cribed to the parent node. The same rule is recursively
applied going upwards in the tree. The absolute winner
arrives at the root node which—in the case of the LMA—is
the next event. For each disk the local minimal time is
known. The only nodes that change their values dynarmi-
cally are the internal nodes. The form of the CBT and the
labels of the leaves remain unaltered.

Based on the local minimal times a tournament (N — 1
matches) to reach the root decides the first event that starts
the simulation. For each internal node a match (comparison
of the local minimal times) is made between its children and
the winner’s identifier is transcribed to it (see Fig. 3.1b). The
local minimal event associated to the disk 7 that reaches the
root of the CBT is the first event.

After processing this event we have a new local minimum
for i, forcing us to update the CBT. This is done performing
new matches at every internal node in the path from leaf / to
the root (as in Fig. 3.1c). If the event was a DDC, similar
matches are made for the partner. This procedure deter-

MARIN, RISS0, AND CORDERO

mines the new event to be processed. From then on the CBT
is updated afier each new event.

Precise implementations for the operations NEXT_
EVENT and SCHEDULE than make use of two new
functions are given in Fig. 3.2:

« Min(/) returns the current local minimal event in L,

¢ TUpdateCBT(i) makes a sequential search of the event
with minimal time in L, and updates the necessary nodes of
the CBT. During this search the invalid event in L; are
eliminated.

(0.35) (0.15) (0.40) {0.30} (.20} (0.32)

(0.20) (0.30) (0.18) {0.10)

b

(0.20) (0.30) (0.16) (0.18)

FIG. 3.1. (a)Structure of the CBT for 10 disks. The internal nodes are
represented by circles and the leaves by squares. Each leaf is associated to
a fixed disk. The local minimal times of every disk is written under each
leaf. {b) Result of the tournament. Note that disk 4 has the lesser of the
local minimal times, (¢) The local minimal time of disk 4 has changed to
0.18 and new matches had to be played along the path from leaf 4 to the
root as indicated by the arrows. Note that disk 6 has now the lesser local
minimal time.

SIMULATION OF HARD PARTICLE SYSTEMS

SCHEDULE(event, ¢,z,t)

begin
if (event = CDD)
then L; — L; U {(t, event, z,C.) }
eise L; — L; U {(¢, event, z) }
endif

end SCHEDULE

NEXT EVENT
begin
UpdateCBT(:")

e

311

z*, event_type describe the current event */

if {event_type = CDD) then UpdateCBT(z*)

repeat
1 — RootCBT
& «— Minfi)

if {£.event = CDD} and (£.c # C¢ .} /* & is invalid */

then -
UpdateCBT(3)
else
if (£.event # VWC)
then
L, <8
C,—C, +1
if (£.event = CDD)
then
Le, « 0
CroCe.+1
endif
endif
endif
until ¢ is valid

return (£.event, 1,& .z, & 1)

end NEXT_EVENT

/* Reschedule */

/*value returned by NEXT_EVENT */

FIG. 3.2. The Local Minima Algorithm.

The CBT can be implemented using an array with 2N — 1
elements of type integer. The children of an event in position
p are placed in the positions 2p and 2p + 1, so that the
father of an event in the position g is at | ¢/2 |. The leaves of
the CBT are between the positions N and 2N —1 of this
array. This fact allows for a quick access to start every CBT
update.

Each element &(x) of a list L, can be a record with one
field for each one of the variables mentioned in (3.1). The
fields j and ¢ for the wall events &;(w) can be used to keep
the variable w and the current value C;, respectively.

Furthermore, each one of these structured variables & has
to have a field with a pointer to the next member of L,. Since
cvery list L, has one and only one wall event &;(w) it is
convenient to use these events as heads of the respective
lists and—to have quick access to these heads—we place the
wall events in an array of size N. The search for the local
minimum in £, starts at the head of the list.

The memory space to keep the DDC events is dynami-
cally created and removed when necessary. 1t is convenient
to define a subroutine to administer these memory blocks
since soon after a block is liberated it will be used by

312

another DDC event. To make the comparisons in the CBT
it is also convenient to have an array of size ¥ such that its
ith element contains a pointer to the local minimum of L.

4. EMPIRICAL RESULTS

In this section we give some empirical results that show
the efliciency of the DSA-LMA strategy to perform
event-driven molecular dynamics simuiations. In all these
simulations a system of N=2500 disks was used as
described in Section 2.

It should be noted that the size of the cells used in the
simulation affects in an important way the efficiency of the
algorithm. In Fig. 4.1 it can be seen that there is a cell size
for which the running time of the simulation is optimum, In
that figure m is the average number of disks per cell and p
is the area density. The figure also shows, for example, that
for m=13 the running time almost doubles the optimum
running time.

In Tablel is the number of millions of collisions per
CPU-hour that our DSA-LMA simulated in different
computers. The computers used were: DG Aviion 200,
DEC-5400 and SUN 690. All our code is in C langnage and
the maximum speed optimization compiler option was used
in every case. To measure the CPU time spent in each
experiment the clock function from the standard C library
was used. For each density and each machine the optimal
value of m was used. The time taken by the initialization
procedure prior to the basic cycle are not considered.

In the following we compare the CPU-time and memory
requirements of the DSA-LMA and two programs—that
we shall cail 4 and B—that contain features of the strategies

MARIN, RISSO, AND CORDERO

TABLE1

Millions of Collisions per Hour of CPU Time in Three
Different Computers with Different Densities

o SUN DEC DG
0.03 07.30 3.58 3.13
0.10 09.56 4.56 394
0.20 12.54 5.80 522
0.30 15,10 6.94 5.81
0.40 1586 7.57 586
0.50 16.07 741 5.60
0.60 1536 7.08 5.30
0.70 14.49 6.30 4.81

found in [2, 17], respectively. In every case the codification
style has been the traditional one. Namely modular
programs using functions having local parameters and
variables. Our DSA-LMA will be called M.

It would be unfair to imply that we are directly com-
paring these author’s strategies since that would necessarily
require using their own programs. Still we are interested in
providing a feeling as to how other strategies perform and
consequently we compare the performance of A, B, and M
in different machines.

In [27] the FEL is based on a binary search tree (BST)
[20] and a basic cycle quite similar to the DSA, except that
instead of using one simulation time for every disk—as
we do—the author used one time for every cell. All the
scheduled events are kept in the BST. To be able to erase the
invalidated events associated to a disk i two doubly-linked
lists are used. The first contains the & (x} and the other one
contains the & (/). Program 4 has our DSA and [2]'s FEL.

1.0
'Y
£ 08
=
y L
= 0.6}
g
&
o) .
= 0.4 B . p =07
=0.2
.g L%, i b Zon
E L p =0.05
= 0.2 r
o */
O‘O 1 L 1 L L i . Iy
0 1 2 3 4) 6 0

FIG. 4.1,

Simulation running fime—in arbitrary units—against the number m of disks per cell for different area densities.

SIMULATION OF HARD PARTICLE SYSTEMS

In [17] only one event per disk is kept in the FEL. The
FEL uses the binary structure of a heap [20]. The event
&:(f) inserted in the heap is the one with lesser time,
provided that there is no &;(x) event with a still smaller time
in the FEL. It could be said that only abselute minima enter
the FEL, while the rest of the predicted events are dropped
altogether. This implies—among other things—that right
after i crosses a virtual wall or its absolute minimum
becomes invalid that it is necessary to calculate possible
events with the disks in the whole neighborhood of i
Program B implements the strategy in [17].

The parameters to make the comparisons are: (a) the
total CPU execution time ratios and (b) the ratio between
the CPU times spent by the different FELs. For each
program and each density the optimal value of m was used.
The experimental points were obtained in runs of 10°
collisions. Every measurement was petformed five times,
observing standard deviations of the execution times of
less than 1%. There were no other important processes
competing for the CPU.

For the DSA-LMA the time spent by the FEL was deter-
mined for each experiment measuring first—in separate
runs—the cost associated to every function called by the
LMA, using one million calls for different L, sizes. During
cach experiment the total cost of the LMA was determined
by counting the number of calls made by the LMA to the
different functions and weighing each counter with the cost
of the respective function.

For program A4 we measured the total simulation time
and since the basic cycle time consumption is that of our
D5A we derived the time spent by the FEL £, by means of
a simple subtraction. In program £ the procedure was
similar. Here the cost associated to recalculations was
added to the FEL time F,.

In Table 11 some experimental results are shown, com-
paring the performance of the different FELs. Column 2 (3)

TABLEI

The Ratio of the Time Spent by the Fuiure Events Lists of
Programs 4 and B over the Time Spent by the FEL in M

f F/Fy Fyl/Fy iy 4 My
00s 174 337 1048 1353 1562
G.10 1.77 2.80 105.7 137.4 156.2
0.20 1.94 240 106.1 1368 1562
0.30 2.13 221 118.8 160.1 156.2
040 237 1.99 1325 176.8 156.2
(.50 2.67 1.82 150.4 193.5 156.2
Q.60 100 1.65 1711 2113 156.2
0.70 337 1.54 200.2 2379 156.2

Note. Also the amount of memory {in Kbytes) required by the FELs
used in M, A, and B. This table was obtained from simulations in a DG
Aviion 200 workstation.

313

has the ratio between the times used by the FEL in 4 (B)
over the time spent by the FEL in M.

In columns 4, 5, and 6 there are the amounts of memory
{measured in Kbytes) required by the FELs used in M, A,
and B, respectively. We associated eight bytes to the type
double of the C language and four bytes for the types int and
pointer. In B we took as part of the FEL’s memory require-
ment the amount of memory needed to keep an additional
copy of the states of the particles [17].

In Table 111 we compare the performance of programs A
and B with M in different computers: DG Aviion 200, DEC-
5400, and SUN 690. In columns 2, 4, and 6 there are the
ratios between the total execution times of programs 4 and
M. In columns 3, 5, and 7 there are the same for program 8.

As we can se¢, program A loses efficiency as the density
becomes greater. This happens because at higher densities
the number of scheduled events is larger, increasing the
number of accesses to the binary tree. The average number
of scheduled events per disk after each event is shown in
Table IV, column 2 (Sch). Column 5 (CBT) gives the
reiative weight of the CBT in the LMA. In this column is
seen that the binary tree is the most costly component of the
FEL despite the fact that the number of accesses to the CBT
has been reduced to about unity per disk for every event
processed in the basic cycle, as shown in Appendix A.

Program B, on the contrary, is more efficient at high
densities. This is fundamentalily due to the decrease of CPV
events at higher densities. At low densities the large amount
of CPV events downgrades the performance because too
many recalculations are required. Column 3 {VWC) shows
the fraction of virtual collisions over the total number of
processes events.

These experiments show that program M keeps a good
performance in all the density range studied. With the LMA
we have reduced the relative cost of the FEL 1o below 23%
of the overail simulation time (see column4 (LMA),

TABLE 111

Ratio of the Total CPU Time of Programs 4 and B over
the CPU Time of Program M in Different Computers

SUN DG DEC

o AfM BiM A/M BiM A BIM
001 1.05 1.58 112 1.68 1.09 1.69
005 100 1.44 116 1.53 1.07 1.62
010 1.08 1.39 118 1.41 1.08 1.46
020 1.09 1.28 1.2t 1.31 1.14 1.28
030 L1 125 1.24 125 1.18 1.16
040 114 1.18 1.26 1.19 1.21 1.15
050 121 1.15 1.29 114 1.28 113
0.60 135 1.13 1.33 111 1.37 L1l
070 132 108 1.37 1.08 1.41 1.06
0.89 1.59 1.09 1.44 105 1.63 102

314

TABLE 1V

el Sch VWC LMA CBT
0.03 1.37 (.83 0.22 0.77
0.10 1.40 0.79 0.22 0.76
0.20 1.45 0.71 0.21 0.74
0.30 1.70 0.57 0.20 0.72
0.40 1.96 0.44 0.19 0.69
0.50 2.29 0.31 0.17 0.65
0.60 2.63 0.21 0.16 0.62
0.70 3.05 0.13 0.13 0.59

Nore. The results in this table are explained in the text. They were
obtained in a DG Aviion 200 workstation.

Table IV). Therefore further betterments in the FEL’s per-
formance would not imply a significant improvement of the
overall program. To devise a significantly better program
one would have to focus on other components of it.

5. FINAL COMMENTS

In this article we have presented and analyzed an efficient
strategy to make event-driven simuiations for systems of
hard particles in one-processor machines. Our strategy
compares positively with other algorithms and it can be
used in simulations varying from dilute systems to near
close-packing ones without any appreciable loss of
efficiency in such extreme situations.

The algorithms and data structures were devised to (a)
minimize the number of coordinate updates to increase
efficiency and reduce the rounding errors, (b) conveniently
adjust the size of the neighborhoods (by means of the cell
matrix .#) to obtain the optimal running time, (¢) keep the
valid events to avoid recalculation, (d) lower the number of
accesses to the binary tree to obtain the next event, and (e)
reduce the cost of inserting and deleting events from the
FEL, thanks to the use of the singly linked lists L,.

A virtue of our strategy—that makes it a good alternative
for interested physicists—is that it is straightforward.
In particular, the singly linked lists and the CBT—imple-
mented as an array of integers—are easy to program.

One-processor architectures allow to make event-driven
simulations of relatively large systems in reasonable times
eg., in [3, 6]. Since this kind of stimulations are strongly
sequential, it is still not clear how to substantially improve
the efficiency using multi-processor andjor vectorized
architectures as discussed in [17, 227].

In multi-processor machines one cannot avoid the fact
that the next-event has to be determined considering all the
scheduled future events. In {17] the author gives details of
a comparison with a parallel simulation which does not
favor the parallel alternative. Furthermore, predicting new
events for a particle with the objects in its neighborhood

MARIN, RISSO, AND CORDERO

could be done in parallel. This gain would decreases the cost
of the predictions in the DSA making the need of having an
efficient FEL—as the one we have defined—still more
important.

APPENDIX A: THE LMA PERFORMANCE

To measure the efliciency for the LM A we use the average
number of event-time comparisons—that is, comparisons
between the times of the scheduled events needed to
organize the FEL.

Define L,;- as the set of DDC events & ,.(f) for which i is
the partner disk. In every list L, there is at most one valid
event involving disk 7 as the partner disk. When a disk / has
a hard collision all the events in L, and in L, are
invalidated. Some of the invalidated events in L,, are local
minima and therefore they have aiready participated in the
matches that take place to organize the CBT. Since they
may produce a rescheduling sometime in the future, we say
that hard collisions generate possible future rescheduling.

Let us consider the interval between two consecutive
DDC events involving disk i. We want to know the number
of comparisons that the LM A demands during that interval.
Immediately after a hard collision, at a time we call 14, a
new list L, of L;(t,) events is associated with disk &
Afterwards, L, starts to shorten (in the sense that some
events in it are invalidated) until there is a VWC event, at
time ¢, that causes new events to be scheduled into L,. We
call 4 the average net growth of a list L, after each VWC
event of i. After k virtual wall collisions the list length
becomes L, (1,)=L,(t,)+k 4.

Leaving the cost of rescheduling aside, for every event
that happens to i the LMA has to pick the event with mini-
mum time in L; at a cost of L,{r,})— | comparisons. Next,
the CBT has to be updated at a cost of C-g comparisons.
Hence if there are v VWC events between two consecutive
hard collisions of disk { the average number of comparisons
15 given by

i (Lilt) =1+ Cepr) = (v +1){Lp+ Cepr), (A1)

LD=L,.(:0)+‘5'A—1 (A2)

is the average length of the lists L,, excluding the wall
collision contained in every list.

To take into account the cost of rescheduling we have to
consider that several reschedules may occur at any moment
in the interval between two successive hard collisions of
disk i For each reschedule it is necessary to obtain the

SIMULATION OF HARD PARTICLE SYSTEMS

next local minimum and update the CBT. Namely, the
cost of rescheduling at a given time 1 (4, _, <1<1y) is
L,(1)— 1+ Cryr. We assume that L,(7) can be taken to be
the average value,

(A.3)

Therefore the cost of the LMA, considering an average of r
reschedules, is

Coma=1+v+r){Lp+ Ceopr) (Ad4)

It is seen then that the efficiency of the LMA is conditioned
by the rescheduling rate r. It will be shown that r is well
below unity.

The worst case would be to have to update the CBT for
all the events that come into £, until i suffers a hard collision
{this would be the event with maximal time!). Even if this
worst case were to happen systematically we must bear in
mind that still we are not updating the CBT for the events
that become invalidated between two events of disk /. This
worst case is, of course, rather unlikely to happen.

In the following we will show a relation for the expected
value r of reschedules that take place between two
successive hard collisions of a disk 7.

Expected value for r. We are going to show that the
number r of RESCHEDULES that have a disk between two
successive hard collisions is approximately equal to the
number of future reschedules (n) generated on the average
by any disk having a hard collision.

We assume that between two disk-disk collisions of a
disk 7/ each one of the M —2 disks that are in its
neighborhood have a disk—disk collision as well. When a
disk collides, an average of n/(M —2) reschedules are
generated for each one of the M —2 disks in the
neighborhood. Hence a disk will have a total of
(M —2)/{M — 2) reschedules between two successive hard
collisions, that is, r = n.

Expected value for n. When a disk { has a hard coilision,
all the events &(j) in L; and all the events &.(i) in L,
become invalidated.

In any list L, that we consider, the DDC ¢vents have the
same probability P,—and the VWC event has the proba-
bility P,—of being local minimum, then P, + L, P, =1,
where L, is the number of DDC events that existin a list L, |
including the event &,{/) (ie., L,=1). Note that L, is not
necessarily equal to L, since each one of these numbers
measure the number of DDC events in L, and L; in
particular (and different) instants of the simulation.

Calling L, the number of events invalidated in L,,., we

315

conclude that the expected number of times when &,(/) is a
local minimum in L, 1s given by
n=P,L,=(1—=PMNL,/L,) (A.5)
From the last expression it 1s seen that the value that
controls the number of reschedules is the ratio L,./L .
Experimentally we have observed that L /L, is between
0.13 and 0.37 as seen in column 3 of Table A.I. This result
shows that, in fact, the rescheduling rate r is well below
unity. In this table we also show an experimental validation
for expression (A.5). Column4 gives the experimental
values of the average number of reschedules per disk
generated after a hard collision. Column 5 has the values of
expression (A.5), obtained using the experimental values of
P,and L,./L, Columns 6 and 7 are explained below.

Effective number of reschedules. Let us see that it is not
convenient to process a reschedule as soon as it is generated.
In fact, delaying this job as much as possible has the
advantage that the number of reschedules is less than the
value given by (A.5).

In our algorithm the total number of reschedules is
dramatically reduced because we process the reschedules
only when the invalidated & (k) reaches the root of the CBT
and not as soon as it is invalidated. The reason is that
during the lapse while the invalidated event &;(k) migrates
towards the root-—caused by CBT updates—it is quite
probable that another disk / will have a hard collision with
Jinamely, an event &,(f) reaches the root, causing erasure of
the invalidated event &;(4) without having to reschedule it.
We must remember that after each hard collision &(f), new
lists L;and L, are built and matches for / and j take place in
the CBT.

Column 6 {R,) of Table A.1 contains the fraction of the
number of reschedules processed over the number of
reschedules that are generated by hard collisions. It is seen
that it is always important to postpone processing the

TABLE Al
£ Py Ly/Ly " 7° Ry R,
005 0471 0.136 0.073 0072 0.489 0011
0.10 0416 0.130 0.076 0.075 0.446 0.013
020 0306 0.119 0.082 0.082 0.394 0.018
030 0279 0.180 0.133 0.12% 0.374 0.040
040 0239 0.230 0.181 0.175 0.358 0.065
0.50 0194 0.284 0.233 0.228 0.339 0.094
0.60 0152 0.326 0.278 0.276 0.337 0.123
070 0117 0.370 0.320° 0.327 0.243 0141
Nate. The results in this table are explained in the text. They were

obtained in a DG Aviion 200 workstation.

* Experimental value for 5.

b i obtained through expression (A.5) using experimental values for P,
and L,/L,.

316

invalidated events. The efficiency gain is more significant as
the density increases. Column 7 (R,)} shows the fraction of
the number of reschedules processed over the total number
of events that reach the root of the CBT during the simula-
tion. The relative weight in the worst cases reaches about
14%.

The cost of updating the CBT. The cost of the CBT,
Ceer, can be better understood looking at Fig. 3.1c. In this
figure we see that there are some leaf nodes at the lowest
level, level K say, and the rest of the leaf nodes are one level
up (level K—1). The cost {a) from level Kis | log, N] +1
matches and (b) from level K—1 it is | log, ¥ | matches.
Furthermore, the number of leaves at level K is
AN —2UlemNIvl and at level K—1 it is 2L+ _ N
Taking the average, the cost of the CBT is

1
Cepr=Llog; NJ+2—X,2U°"’NJ+1. (A.6)

If & is an integer power of two then the minimal asymptotic
cost Copr =log, NV is reached. Hence we conclude that the
average cost of the LMA for each event processed is close to
Ly+log, N.

APPENDIX B: NOTATION AND GLOSSARY

In the foliowing list we summarize the main symbols and
terms used throughout the paper. Some symbols exclusive
of one section are not included here.

BST Binary search tree

C, Current number of hard collisions of i
CBT Complete binary tree

Cells Subdivisions of the box

Cell-matrix See under .4
D Disk diameter

MARIN, RISSO, AND CORDERO

Leaf node Node at the base of the CBT

L, The list of future events & () scheduled
for disk {

LMA Local Minima Algorithm (Section 3)

Ly, L, Width and height of the box

Local minimum Event with lesser time in a list L,

L, Set of events &,(7) with i fixed

L, Average number of cvents &(i)
invalidated in L, right after a hard
collision

L, Average number of DDC events in the
lists L, containing an event &.(i) (right
after a &(x) event)

L, Average number of DDC eventsinany L,

M Cell matrix of K,x K, elements that
keeps up the name of the disks currently
present in every cell

m Average number of disks in a cell

Match Event time comparison between two
local minima

N Number of disks in the box

Neighborhood Set of cells that surround a disk

Partner Object x in an event &;(x) ~

P, Probability of a DDC in L, being the
local minimum

P, Probability for the VWC of a typical list
L, to be the local minimum

Reschedule Search for a local minimum after a & (x)
was found to be invalid

P Area density: w DEN/(4L L)

Schedule Insertion of a new event in a list L,

S, State of disk /

o Linear size of every cell

Ty Functions that predicts DDC events

T, Functions that predicts VWC and DWC
events

T The last time that disk / partictpated in a
hard collision

x Any object, a disk, a hard or virual wall

Virtual wall Border between two neighboring cells

VWC Virtual wall crossing event

w

Denotes a wall

DDC Disk—disk collision event

DWC Disk-{hard) wall collision event

DSA Delayed States Algorithm (Section 2)

&) Structured variable associated to a
disk—disk collision

& (x) Structured variable associated to a
disk-i—object x collision

&i(w) Structured variable associated to a
disk-(virtual or hard} wall collision

FEL Future events list

Hard collision Collision between real objects, either
DDC or DWC events

Heap Data structure based on a binary tree

iLjk Denote disks

Invalid event

K., K,

Event &,(/) scheduled into the FEL
before j suffered a hard collision
Number of cells in the X and Y directions

ACKNOWLEDGMENTS

One of us (M.M.) thanks R. Baeza-Yates for his guidance in topics
related with data structures and algorithms. We also express our gratitude
to P. Lira.

REFERENCES

1. B.J. Alder and T. E. Wainright, J. Chem. Phys. 27, 1208 (1957).
2. D. C. Rapaport, J. Comput. Phys. 34, 184 (1980).
3. M. Mareschal and E. Kestemont, Phys. Rev. A 30, 1158 (1984),

o R R A

SIMULATION OF HARD PARTICLE SYSTEMS

. E. Meilburg, Phyvs. Fluids 29, 3107 (1986).

. M. Mareschal and E. Kestemont, J. Stat. Phys. 48, 1187 (1987).

. . C. Rapaport, Phys. Rev. Lett. 60, 2480 (1988).

. D. C. Rapaport, Phys. Rev. Lett. 43, 7046 (1991).

. B. D. Lubachevsky and F. H. Stillinger, J. Star. Phys. 60, 561 (1991);
B. D. Lubachevsky, F. H. Stillinger, and E. N. Pinson, J. Srat. Phys. 64,
301 (1991).

. D. E. Risso and P. Cordero, in Condensed Maiter Theories, Yol. 7,
Mar del Plata, 1991, edited by A. N. Proto and J. Aliaga (Plenum,
New York, 1991).

. M. P. Allen and D.). Tildesley, Compuier Simulation of Liguids
(Oxford Science, London, 1990).

. W. G. Hoover, Molecular Dynamics (Springer-Verlag, New York,
1986).

G. Ciccotti and W. G. Hoover (Eds.), Molecular- Dynamics Simuiation
of Statistical-Mechanical Systems (North-Holland, Amsterdam,
1986); G. Ciccotti, D. Fremkel, and 1. R. McDonald (Eds.)}, Simulation
of Liguids and Solids {(North-Holland, Amsterdam, 1987).

13
14

15.
17.
18.
19.

20.

21.

3T

. B. 1. Alder and T. E. Wainright, J. Chem. Phys. 31, 459 (1939).

. J. J. Erpenbeck and W. W. Wood, in Statistical Mechanics B. Modern
Theoretical Chemistry, Vol. 1, edited by B. I. Berne, (Plenum,
New York, 1977).

F. P. Wayman, Comm. ACM 18, 350 (1975},

. W, R. Franta and K. Maly, Comm. ACM 20, 596 (1977).

B. D. Lubachevsky, J. Comput. Phys. 94, 255 (1991).

D. W. Jones, Comm. ACM 29, 300 (1986).

S. Carlsson, I. I, Munro, and P. V. Poblete, in SWAT 88, Halmstad,
1988, Vol. L.

D. E. Knuth, The Art of Computer
{Addison-Wesley, Reading, MA, 1973).

G. H. Gonnet and R, Bacza-Yates, Handbook of Algorithms and Data
Structures (Addison—Wesley, Reading, MA, 1991).

Programming, Vol.3

. D. C. Rapaport, “Thought on Vectorized Algorithms for Molecular

Dynamics,” in Computer Simulation Studies in Condensed Matter
Physics I, edited by D. P. Landau, K. K. Mon, and H.-B. Schiister
{Springer-Verlag, New York/Berlin, 1990}).

